Structure Reports

Online
ISSN 1600-5368

Feng Bao, ${ }^{\text {a }}$ Ying Chen ${ }^{\text {a }}$ and

 Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\text {* }}$${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.065$
$w R$ factor $=0.196$
Data-to-parameter ratio $=9.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A cocrystal of 3-nitrophenylanilinium perchlorate and 3-nitroaniline

3-Nitroanilinium perchlorate crystallizes with a molecule of 3nitroaniline to give the title compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.$\mathrm{ClO}_{4}{ }^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$; all atoms except one O atom of the perchlorate ion and two H atoms bonded to nitrogen lie on a mirror plane. Hydrogen bonds link the cation, anion and neutral molecule into a chain that runs along the c axis of the orthorhombic unit cell.

Comment

The Schiff base that is derived by condensing acetylacetone and a substituted aniline rearranges itself upon being deprotonated in order to chelate to copper (Atakol et al., 1997; Barclay \& Hoskins, 1965; Elmali et al., 1997; Tahir et al., 1996). In our hands, in the reaction of the 3-nitro substituted ligand with copper perchlorate, the ligand is cleaved (probably to starting reactants). The 3-nitroaniline portion separates from solution in the protonated form, as well as a neutral molecule, to give the title compound, (I) (Fig. 1). The cation, molecule and anion are linked by hydrogen bonds (Table 1 and Fig. 2) into a chain that runs along the c axis of the orthorhombic unit cell. The cation and the molecule are located on alternate sides of the ribbon. The crystal structure of anilinium perchlorate has been reported; this salt exists as a hydrogenbonded compound (Paixão et al., 1997), but the hydrogen bonds are much weaker than those in the present compound.

Experimental

Acetylacetone ($3 \mathrm{ml}, 0.03 \mathrm{~mol}$), 3-nitroaniline ($4.14 \mathrm{~g}, 0.03 \mathrm{~mol}$) and a catalytic amount of p-toluenesulfonic acid were dissolved in toluene (30 ml). The mixture was refluxed for 6 h and the water was separated azeotropically in a Dean-Stark apparatus. The solvent was removed and the product purified by recrystallization from hexane to yield 4 -(3-nitrophenylamino)-3-penten-2-one in 80% yield. To a chloroform (5 ml) solution of the ligand $(50 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added triethylamine ($0.32 \mathrm{ml}, 0.23 \mathrm{mmol}$) and copper perchlorate (60 mg , $0.23 \mathrm{mmol})$ dissolved in ethanol (25 ml). The resulting brown mixture was filtered and the solution set aside for several days to allow for the formation of crystals. Copper was not incorporated into the crystal-
line product. $\mathrm{CH} \& \mathrm{~N}$ elemental analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{8}$: C 38.26, H 3.48, N 14.88\%; found: C 38.60, H 3.29, N 14.63\%.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$ $M_{r}=376.71$
Orthorhombic, Pbcm
$a=7.9181$ (3) \AA
$b=30.848$ (2) A
$c=6.3894$ (4) \AA
$V=1560.7(1) \AA^{3}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: None
14008 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1029 P)^{2} \\
&+3.8634 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.603 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.30 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.20 \times 0.10 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

1512 independent reflections
1402 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.0^{\circ}$
$w R\left(F^{2}\right)=0.196$
$S=1.05$
1512 reflections
159 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 n 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.85 (1)	1.90 (1)	2.748 (6)	177 (6)
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{O} 2^{\text {i }}$	0.85 (1)	1.91 (1)	2.760 (4)	174 (4)
N3-H3n1 \cdots O2	0.85 (1)	2.20 (2)	2.929 (5)	144 (4)

Symmetry codes: (i) $x, y,-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.
The three ammonium and two amino H atoms were located in a difference Fourier map and were refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.85$ (1) \AA; their displacement parameters were freely refined. All other H atoms were placed in calculated positions [C$\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$, and were included in the refinement in the riding-model approximation.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

Figure 1
Structure of the title compound. Displacement ellipsoids are plotted at the 50% probability level and H atoms as spheres of arbitrary radii. [Symmetry code: (i) $x, y, \frac{1}{2}-z$.]

Figure 2
Hydrogen-bonded (dashed lines) chain structure.

We thank Central China Normal University and the University of Malaya for supporting this study.

References

Atakol, O., Ercan, F., Ülkü, D. \& Yilmaz, N. (1997). Anal. Sci. 13, 1051-1052. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991.
Bruker (2003). SAINT (Version 6.54A) and SMART (Version 6.54A). Bruker AXS Inc., Madison, Wisconsin, USA.
Elmali, A., Elerman, Y., Svoboda, I., Fuess, H., Griesar, K. \& Haase, W. (1997). Z. Naturforsch. Teil B, 52, 157-161.

Paixão, J. A., Matos Beja, A., Ramos Silva, M., Alte da Veiga, L. \& Martin-Gil, J. (1997). Z. Kristallogr. New Cryst. Struct. 214, 85-86.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tahir, M. N., Ülkü, D., Atakol, O. \& Akay, A. (1996). Acta Cryst. C52, $2676-$ 2678.

[^0]: © 2006 International Union of Crystallography All rights reserved

